156 research outputs found

    An assessment of Evans' unified field theory I

    Get PDF
    Evans developed a classical unified field theory of gravitation and electromagnetism on the background of a spacetime obeying a Riemann-Cartan geometry. This geometry can be characterized by an orthonormal coframe theta and a (metric compatible) Lorentz connection Gamma. These two potentials yield the field strengths torsion T and curvature R. Evans tried to infuse electromagnetic properties into this geometrical framework by putting the coframe theta to be proportional to four extended electromagnetic potentials A; these are assumed to encompass the conventional Maxwellian potential in a suitable limit. The viable Einstein-Cartan(-Sciama-Kibble) theory of gravity was adopted by Evans to describe the gravitational sector of his theory. Including also the results of an accompanying paper by Obukhov and the author, we show that Evans' ansatz for electromagnetism is untenable beyond repair both from a geometrical as well as from a physical point of view. As a consequence, his unified theory is obsolete.Comment: 39 pages of latex, modified because of referee report, mistakes and typos removed, partly reformulated, taken care of M.W.Evans' rebutta

    An exact solution of the metric-affine gauge theory with dilation, shear, and spin charges

    Get PDF
    The spacetime of the metric-affine gauge theory of gravity (MAG) encompasses {\it nonmetricity} and {\it torsion} as post-Riemannian structures. The sources of MAG are the conserved currents of energy-momentum and dilation, shear and spin. We present an exact static spherically symmetric vacuum solution of the theory describing the exterior of a lump of matter carrying mass and dilation, shear and spin charges.Comment: 13 pages, RevTe

    An assessment of Evans' unified field theory II

    Get PDF
    Evans developed a classical unified field theory of gravitation and electromagnetism on the background of a spacetime obeying a Riemann-Cartan geometry. In an accompanying paper I, we analyzed this theory and summarized it in nine equations. We now propose a variational principle for Evans' theory and show that it yields two field equations. The second field equation is algebraic in the torsion and we can resolve it with respect to the torsion. It turns out that for all physical cases the torsion vanishes and the first field equation, together with Evans' unified field theory, collapses to an ordinary Einstein equation.Comment: 11 pages of late

    On the theory of the skewon field: From electrodynamics to gravity

    Full text link
    The Maxwell equations expressed in terms of the excitation =˝(H,D)\H=({\cal H}, {\cal D}) and the field strength F=(E,B)F=(E,B) are metric-free and require an additional constitutive law in order to represent a complete set of field equations. In vacuum, we call this law the ``spacetime relation''. We assume it to be local and linear. Then =˝(˝F)\H=\H(F) encompasses 36 permittivity/permeability functions characterizing the electromagnetic properties of the vacuum. These 36 functions can be grouped into 20+15+1 functions. Thereof, 20 functions finally yield the dilaton field and the metric of spacetime, 1 function represents the axion field, and 15 functions the (traceless) skewon field \notS_i{}^j (S slash), with i,j=0,1,2,3i,j=0,1,2,3. The hypothesis of the existence of \notS_i{}^j was proposed by three of us in 2002. In this paper we discuss some of the properties of the skewon field, like its electromagnetic energy density, its possible coupling to Einstein-Cartan gravity, and its corresponding gravitational energy.Comment: latex-file, 15 pages, 1 figur

    Torsion as electromagnetism and spin

    Full text link
    We show that it is possible to formulate the classical Einstein-Maxwell-Dirac theory of spinors interacting with the gravitational and electromagnetic fields as the Einstein-Cartan-Kibble-Sciama theory with the Ricci scalar of the traceless torsion, describing gravity, and the torsion trace acting as the electromagnetic potential.Comment: 6 pages; published versio

    Spin and Rotation in General Relativity

    Get PDF
    Rapporteur's Introduction to the GT8 session of the Ninth Marcel Grossmann Meeting (Rome, 2000); to appear in the Proceedings.Comment: LaTeX file, no figures, 15 page

    Maxwell's field coupled nonminimally to quadratic torsion: Induced axion field and birefringence of the vacuum

    Full text link
    We consider a possible (parity conserving) interaction between the electromagnetic field FF and a torsion field TαT^\alpha of spacetime. For generic elementary torsion, gauge invariant coupling terms of lowest order fall into two classes that are both nonminimal and {\it quadratic} in torsion. These two classes are displayed explicitly. The first class of the type FT2\sim F T^2 yields (undesirable) modifications of the Maxwell equations. The second class of the type F2T2\sim F^2 T^2 doesn't touch the Maxwell equations but rather modifies the constitutive tensor of spacetime. Such a modification can be completely described in the framework of metricfree electrodynamics. We recognize three physical effects generated by the torsion: (i) An axion field that induces an {\em optical activity} into spacetime, (ii) a modification of the light cone structure that yields {\em birefringence} of the vacuum, and (iii) a torsion dependence of the {\em velocity of light.} We study these effects in the background of a Friedmann universe with torsion. {\it File tor17.tex, 02 August 2003}Comment: 6 page

    Big bounce from spin and torsion

    Full text link
    The Einstein-Cartan-Sciama-Kibble theory of gravity naturally extends general relativity to account for the intrinsic spin of matter. Spacetime torsion, generated by spin of Dirac fields, induces gravitational repulsion in fermionic matter at extremely high densities and prevents the formation of singularities. Accordingly, the big bang is replaced by a bounce that occurred when the energy density ϵgT4\epsilon\propto gT^4 was on the order of n2/mPl2n^2/m_\textrm{Pl}^2 (in natural units), where ngT3n\propto gT^3 is the fermion number density and gg is the number of thermal degrees of freedom. If the early Universe contained only the known standard-model particles (g100g\approx 100), then the energy density at the big bounce was about 15 times larger than the Planck energy. The minimum scale factor of the Universe (at the bounce) was about 103210^{32} times smaller than its present value, giving \approx 50 \mum. If more fermions existed in the early Universe, then the spin-torsion coupling causes a bounce at a lower energy and larger scale factor. Recent observations of high-energy photons from gamma-ray bursts indicate that spacetime may behave classically even at scales below the Planck length, supporting the classical spin-torsion mechanism of the big bounce. Such a classical bounce prevents the matter in the contracting Universe from reaching the conditions at which a quantum bounce could possibly occur.Comment: 6 pages; published versio

    Cartan's spiral staircase in physics and, in particular, in the gauge theory of dislocations

    Full text link
    In 1922, Cartan introduced in differential geometry, besides the Riemannian curvature, the new concept of torsion. He visualized a homogeneous and isotropic distribution of torsion in three dimensions (3d) by the "helical staircase", which he constructed by starting from a 3d Euclidean space and by defining a new connection via helical motions. We describe this geometric procedure in detail and define the corresponding connection and the torsion. The interdisciplinary nature of this subject is already evident from Cartan's discussion, since he argued - but never proved - that the helical staircase should correspond to a continuum with constant pressure and constant internal torque. We discuss where in physics the helical staircase is realized: (i) In the continuum mechanics of Cosserat media, (ii) in (fairly speculative) 3d theories of gravity, namely a) in 3d Einstein-Cartan gravity - this is Cartan's case of constant pressure and constant intrinsic torque - and b) in 3d Poincare gauge theory with the Mielke-Baekler Lagrangian, and, eventually, (iii) in the gauge field theory of dislocations of Lazar et al., as we prove for the first time by arranging a suitable distribution of screw dislocations. Our main emphasis is on the discussion of dislocation field theory.Comment: 31 pages, 8 figure

    Four-fermion interaction from torsion as dark energy

    Full text link
    The observed small, positive cosmological constant may originate from a four-fermion interaction generated by the spin-torsion coupling in the Einstein-Cartan-Sciama-Kibble gravity if the fermions are condensing. In particular, such a condensation occurs for quark fields during the quark-gluon/hadron phase transition in the early Universe. We study how the torsion-induced four-fermion interaction is affected by adding two terms to the Dirac Lagrangian density: the parity-violating pseudoscalar density dual to the curvature tensor and a spinor-bilinear scalar density which measures the nonminimal coupling of fermions to torsion.Comment: 6 pages; published versio
    corecore